REACTION AND SUBSTITUENT CONSTANTS FOR PYRAMIDAL INVERSION Janet S. Splitter and Melvin Calvin Department of Chemistry and Laboratory of Chemical Biodynamics, University of California, Berkeley, Calif., 94720

(Received in USA 17 August 1973; received in UK for publication 10 September 1973)

We wish to show that from a Hammett ρ for the nitrogen inversion of 1-ary1-2,2-dimethylaziridines,¹ where the correlation is with σ_p^- of the p-substituent in the phenol,^{1,2} substituent constants for pyramidal inversion (σ_{inv}) can be derived for substituents directly on the inverting atom.

In order to determine the Hammett ρ at 25°, the inversion rates of these 1-arylaziridines at 25° were determined from the experimental ΔG^{\dagger} values¹ adjusted to 25° by assuming $\Delta S^{\dagger} = 0$. A plot of these log k values $\underline{vs} \sigma_p^{-}$ gave a ρ of 2.5³ (Fig. 1). This value was used in Fig. 2 to determine σ_{inv} constants for the substituents on the nitrogen atom. The σ_{inv} constants so determined were used to determine ρ values for other series as shown in Fig. 3, using experimentally determined rate constants adjusted to 25°. From these ρ values, a number of σ_{inv} constants

were determined for substituents that were not present in the aziridine series. The data in Fig. 2 and 3 are summarized in Table 1. Substituents that were common to more than one series were Si(CH₃)₃, COCH₃, SiH(CH₃)₂, SC₆H₅, C₆H₅, H, C(CH₃)₃, cyclohexyl, CH(CH₃)₂, CH₃, NH₂, Br, Cl, and OH. The other substituents occurred in only one series and those σ_{inv} constants are, therefore, subject to greater error.⁷ The σ_{inv} constants are many times larger in value than the Hammett σ constants. This can be attributed to the fact that the substituent is directly on the reacting center in inversion. There are three well-known factors evident in the order of the σ_{inv} constants: electronegativity, conjugative and steric effects.⁸ In the acyclic amine series, the σ_{inv} constants appear to be additive.⁹ N-Fluoro-N-methylformamide has a nitrogen atom with substituents of widely

Fig. 2. Log k for nitrogen inversion in aziridines $\underline{vs} \sigma_{inv}$; see Table 1 for the data. The x's represent the points in Fig. 1 adjusted to solvent C, Table 1; σ_{inv} , for aryl = σ_{inv} , for phenyl + σ_p^- for the p-substituent. Four substituents, which were present in the 2,2-dimethyl series, determined the ρ of the carbon unsubstituted aziridine series. The H substituent, which was present in this series, determined the position of the $\sigma_{inv} = 0$.

Fig. 3. Log k for pyramidal inversion <u>vs</u> σ_{inv} constants. The points on the dashed lines are for the sum of σ_{inv} constants of the substituents on the inverting atom. differing σ_{inv} constants, the sum of which is -4.9. The log k corresponding to σ_{inv} = -4.9 determined from the H₂N- line in Fig. 3 is 4.6, nearly the same as the 4.7 determined experiment-

ally¹⁰ and adjusted to 25°.

From Fig. 3 can be seen that the cyclic amine series¹² converge to a point where log k = 12.8 and $\sigma_{inv.}$ = 4.9. This indicates that a substituent with $\sigma_{inv.}$ of 4.9 would cause the amine to be effectively planar irrespective of ring constraints.¹³ The substituent, difluorophosphine, appears to have a $\sigma_{inv.}$ constant of 4.3 or greater, because it has been shown to give a planar amine.¹⁴

The difference in barrier between the cyclic amines and the oxaziridines at $\sigma_{inv.} = 4.9$ is 6.5 kcal/mol, an increase due to the presence of the oxygen atom. Although there is only limited data for the 5 and 6 membered rings containing both 0 and N atoms as in the oxaziridines, the intersection of the line for the 6 membered ring with the oxaziridine line at $\sigma_{inv.} = 4.9$ gives a ρ of 0.9 which is the same ρ as for the acyclic amines and homopiperidines. Also on this same line would be the acyclic hydroxylamine series assuming additive $\sigma_{inv.}$ constants. Therefore, it appears that the N-O ring series also converge at $\sigma_{inv.} = 4.9$.

No. 42

The data for acyclic phosphines and arsines are very limited for any one series. However, by plotting the log k <u>vs</u> the sum of the σ_{inv} constants, reasonably straight lines can be obtained.¹⁵ The ratio of the ρ values for the acyclic amines, phosphines, and arsines is 0.5: 1.0: 1.25 compared to the 0.34: 1.0: 1.4 ratio of sensitivities for calculated barriers.¹⁶

From the correlation of data reported here, predictions can be made for rates of inversion of many compounds not yet measured. As more experimental data becomes available, the values of the σ_{inv} constants reported here may need to be revised.

Substituent	^σ inv.	log k ^a (25°)	Substituent	t ^σ inv.	log k ^a (25°)
-Si(CH ₃) ₃	+ 4.4	$-1.28^{b,c}$, $-5.90^{b,c}$	-C (CH ₂) 2	0	$8.5V^{z}$, $-0.6N^{aa,n}$, $-6.3T^{bb}$
-COCH3	+ 3.8	>8.7V ^d , -1.6D ^e , 4.1 ^f	55		$-11.3D^{t,u}, -12.2N^{l,n}$
-SiH(CH ₃) ₂	+ 3.5	$3.9R^{b,g}, -0.2^{b,g}$	-cyclohexy	- 0.2	-0.1C ¹ , -13.6D ^{t,u}
-СОН	+ 3.5	12.0N ^h	-CH(CH ₃) ₂	- 0.3	3.7M ^{CC} , 1.9M ^{CC} , -0.3C ^r
-co ₂ ch ₃	+ 3.1	7.8V ^d		1	-10.17 ^{dd}
-PO(C ₆ H ₅) ₂	+ 2.7	6.9M ¹	-CH ₂ C ₆ H ₅	- 0.3	$-0.3C^{1}$
-CN	+ 2.6	11.3N ^J	-CH ₃	- 0.6	$9.3N^{ee}$, $8.5V^{z}$, $8.2V^{ff}$
-CON(CH3)2	+ 2.3	5.7V ^d		1	8.0C ^{gg} , 7.6C ⁰ , 6.8C ^{gg}
-SCC13	+ 2.3	6.3M ^k			$6.3R^{p,n}$, $5.5C^{gg}$, $2.8M^{hh}$
-N0 ₂	+ 2.1	10.8N ^J			$1.3C^{hh}$, $-1.0C^{r}$, $-2.2C^{r,n}$
-As(CH ₃) ₂	+ 1.9	5.4M ¹			-10.9T ^{bb,ii}
- SO2C6H5	+ 1.6	3.8C ¹	-NH ₂	- 1.6	$7.3N^{jj}$, $7.0C^{kk}$, $6.8C^{o}$
-SO2CH3	+ 1.5	3.5C ^d	-		5.2R ^{1,n}
-SC6H5	+ 1.4	4.2M ^k , 3.3C ¹	-Br	- 2.2	6.4R ^{0,n} , 4.5M ^P
-C6H5	+ 1.3	$4.4R^{m,n}$, $3.2S^{d,n}$, $-4.4R^{S}$	-C1	- 2.5	$6.3M^{11}$, $5.8C^{mm}$, $6.2C^{gg}$
		-9.6D ^{t,u} , -10.8D ^{t,u,v}			$6.0C^{\circ}$, $4.9A^{nn,n}$, $5.1R^{\circ\circ,n}$
		-18.8D ^{w,u}			$4.2M^{p}$, $3.0C^{gg}$, $-5.6B^{pp,n}$
-SOC6H5	+ 1.2	2.8C ¹			-7.2R ^{qq,n}
-SCH3	+ 0.9	2.9C ^k	-OCH3	∿- 2.5	5.2A ^{nn,n}
-н	0	8.5N ^X , -0.5R ^{Y, n}	-OCOCH3	- 4.9	4.0C ^{rr}
			-он	- 5.5	3.5C ^{rr} , 3.4C ^o , 3.3A ^{nn,n}
			- F	- 7.8	1.7R ^{ss,n}
					ł

Table 1. Substituent Constants for Pyramidal Inversion.

<u>a</u> Calculated from the Eyring equation assuming a transmission coefficient of unity; $\Delta G^{+}_{25}^{\circ}$ was calculated from $\Delta G^{+}_{25}^{\circ} = \Delta G^{+}_{T} + RT - RT_{25}^{\circ}$, assuming $\Delta S^{+} = 0$. Log k = log k₀ + $\rho\sigma_{inv}$, where log k₀ is for the H substituent. Solvents: A, (CD₃)₂CO; B, C₆H₆; C, DCD1₃, CHC1F₂, CHFC1₂; D, decalin, toluene, bromonaphthalene; M, CH₂Cl₂; N, no solvent; R, CCl₄, CF₂Cl₂, CFC1₃; S, CS₂; T, C₂Cl₄; V, CD₂ = CDC1. <u>b</u> R.D. Baechler, J.P. Casey, R.J. Cook, G. Senkler and K. Mislow, J.Amer.Chem.Soc., 94, 2859 (1972). <u>c</u> Sum of σ_{inv} for (C₆H₅) (CH(CH₃)₂) (EOCH₃) = 4.8. <u>f</u> G. Senkler in K. Mislow, ibid., 93, 1805 (1971); sum of σ_{inv} for (C₆H₅) (COCH(CH₃)₂)₂ = 8.9. <u>g</u> Sum of σ_{inv} for (C₆H₅) (SiH(CH₃)₂)₂ = 8.3.

4113

h C.C. Costain and J.M. Dowling, J.Chem.Phys., 32, 158 (1960). i F.A.L. Anet, R.D. Trepka and D.J. Cram, J.Amer.Chem.Soc., 89, 357 (1967). j D.G. Lister and J.K. Tyler, Chem.Commun., 152 (1966). k J.M. Lehn and J. Wagner, ibid., 1298 (1968). 1 J.M. Lehn, Fortschr.Chem.Forschg., 15, 311 (1970). <u>k</u> 5.M. Lehn and J. wagner, <u>151d</u>., 1298 (1968). <u>1</u> J.M. Lehn, Fortschr.Chem.Forschg., <u>15</u>, 311 (1970). <u>m</u> Ref. 1. The log k and (σ_{1nV}) of the other X's on this line: p-02NC₆H₄-, 7.0C(2.55); p-F₃CC₆H₄-, <u>5</u>.3Rⁿ(2.04); p-ClC₆H₄-, 4.5Rⁿ(1.55); p-CH₃OC₆H₄-, 3.4Rⁿ(1.17). <u>n</u> The ΔG^{\pm}_{25} was adjusted slightly to the estimated ΔG^{\pm}_{25} for solvent C or M according to <u>o</u> and <u>p</u> for solvent R, to <u>q</u> and <u>r</u> for solvent S, and to <u>r</u> for other solvents. <u>o</u> Ref. 6. <u>p</u> J. Lehn and J. Wagner, Chem. Commun., 148 (1968) <u>q</u> M. Raban, F.B. Jones, E.H. Carlson, E. Banucci, and N.A. LeBel, J.Org.Chem., <u>35</u>, 1496 (1970) for $\overline{a} \Delta G^{\ddagger}$ for solvent S between the ΔG^{\ddagger} 's for no solvent and toluene; adjustment then made according to r. r T. Drakenberg and J.M. Lehn, J.Chem.Soc., Perkin II, 532 (1972). s H. Ono, J. Splitter, and M. Calvin, preceding paper. t R.D. Baechler and K. Mislow, J.Amer.Chem.Soc., 92, 3090 (1970). usum of $\sigma_{inv.}$ for (CH₃)(σ_{cH_3})(p-toly1) = 1.85; for (CH₃)(n-C₃H₇ or C₂H₅)(C_{cH_3}) = 0.1; for (CH₃) (C6H₅)(t-C₄H₉) = 0.7; for (CH₃)(n-C₃H₇)(σ_{v} Cl₃)(n-C₃H₇ or C₂H₅)(C_{cH_3}) = 0.1; for (CH₃) (C6H₅)(t-C₄H₉) = 0.7; for (CH₃)(n-C₃H₇)(σ_{v} Cl₃)(n-C₃H₇ or C₂H₅)(C_{cH_3}) = 0.1; for (CH₃) (C_{cH_3})(t-C₄H₉) = 0.7; for (CH₃)(n-C₃H₇)(σ_{v} Cl₃)(n-C₃H₇ or C₂H₅)(t-C₄H₅) = 0.1; for (CH₃)(t-C₄H₉)(t-C₄H₉) = 0.7; for (CH₃)(n-C₃H₇)(σ_{v} Cl₃)(n-C₃H₇ or C₂H₅)(t-C₄H₉) = 0.1; for (CH₃)(t-C₄H₇)(σ_{v} Cl₄)(t-C₄H₉) = 0.7; for (CH₃)(n-C₃H₇)(σ_{v} Cl₄)(t-C₄H₉) = 0.1; for (CH₃)(t-C₄H₇)(t-C₄H₇)(t-C₄H₇)(t-C₄H₉) = 0.1; for (CH₃)(t-C₄H₇)(t-C and G. Torre, Chem. Commun., 1086 (1969). cc D.L. Griffith and B.L. Olson, ibid., 1682 (1968). dd A. Mannschreck and W. Seitz, private communication; for 2-isopropyl-3-phenyloxaziridine. ee M. Tsuboi, A. Hirakawa, and K. Tamagake, J.Mol.Spectrosc., 22, 272 (1967). ff M.J.S. Dewar and W.B. Jennings, J.Amer.Chem.Soc., <u>93</u>, 401 (1971). <u>gg</u> J.B. Lambert, W.L. Oliver, Jr., and B.S. Packard, <u>jbid.</u>, <u>93</u>, 933 (1971). <u>hh</u> F.G. Riddell, J.M. Lehn and J. Wagner, Chem.Commun., 1403 (1968). <u>ii</u> A. Mannschreck, J. Linss, and W. Seitz, Ann., <u>727</u>, 224 (1969). <u>jj</u> Y. Hamada, A. Hirakawa, K. Tamagake and M. Tsuboi, J. Mol.Spectrosc., <u>35</u>, 420 (1970). <u>kk</u> M.J.S. Dewar and W.B. Jennings, J.Amer.Chem. Soc., <u>95</u>, 1562 (1973). <u>11</u> C.H. Bushweller and J.W. O'Neill, Tetrahedron Lett., <u>3471</u> (1971). <u>mm</u> W.B. Jennings and R. Spratt, Chem.Commun., 54 (1971). nn D.L. Griffith, B.L. Olson, and J.D. Robert J.Amer.Chem.Soc., <u>93</u>, 1648 (1971). <u>oo</u> J.B. Lambert and W. Oliver, Tetrahedron Lett., 6187 (1968). pp D. Felix and A. Eschenmoser, Angew.Chem.Int.Ed.Engl., <u>7</u>, 224 (1968); for 7-chloro-7-azabicyclo [4.1.0] heptane. <u>qq</u> R.G. Kostyanovsky, Z.E. Samojlova, and I.I. Tchervin, Tetrahedron Lett., 719 (1969); for 1-chloro-2-methylaziridine. rr J.R. Fletcher and I.O. Sutherland, Chem.Commun., 687 (1970). ss Ref. 10.

REFERENCES AND FOOTNOTES

- 1. J.D. Andose, J.M. Lehn, K. Mislow and J. Wagner, J.Amer.Chem.Soc., 92, 4050 (1970).
- 2. The σ_p^- constants were derived from acidity constants of substituted phenols; A. Fischer, G.J.
- Leary, R.D. Topson, and J. Vaughan, J.Chem. Soc., B, 782 (1966). The σ_p^- value used for -OCH₃ was -0.13⁴ and for CI, +0.25 calculated⁵ for both Cl and Br, then adjusted according to the experimental value for Br.⁴ The ΔG^{\pm} for the p-nitrophenylaziridine was adjusted to $\Delta G^{\pm} = 7.8$ kcal/mol for CF₂Cl₂ according to data in ref. 6. For the corres-3. The σ_p ponding points in Fig. 2 and 3, the ΔG^{\pm} values were adjusted for solvent C. Therefore, the log k values are slightly lower than in Fig. 1.
- 4. L.A. Cohen and W.M. Jones, J.Amer.Chem.Soc., 85, 3397 (1963).
- 5. C.G. Swain and E.C. Lupton, Jr., ibid., 90, 4328 (1968).
- J.M. Lehn and J. Wagner, Tetrahedron, 26, 4227 (1970).
 The log k of CH₃NH₂ and (PhCH₂)(CH₃)NC1 deviated considerably; because of the latter deviation, the σ_{inv} of -OCH_z is subject to great uncertainty. Also, the log k of 2-(t-butyl)-3,3diphenyloxaziridine deviated considerably, probably because of steric interaction between the t-butyl group and the adjacent phenyl groups.
- 8. For a review of pyramidal inversion: J.B. Lambert, Topics in Stereochem., 6, 19 (1971).
- 9. With increasing steric bulk at the inverting atom, σ_{inv} constants may not be additive.
- 10. J. Cantacuzene, J. Leroy, R. Jantzen, F. Dudragne, J.Amer.Chem.Soc., <u>94</u>, 7924 (1972); the ΔG[±] of 11.1 kcal/mol was attributed to rotation of the formyl group. However, it is reasonable that this barrier is an inversion-rotation barrier; the inversion and t-butyl rotation barriers have been shown to be identical in t-butylmethylbenzylamine.11
- 11. C.H. Bushweller, J.W. O'Neil and H.S. Bilofsky, J.Amer.Chem.Soc., <u>93</u>, 542 (1971).
- 12. The ρ values reflect the sensitivities to angular constraints. The presence of substituents on the ring caused a decreased ρ compared to the unsubstituted ring. The presence of the oxygen atom in the oxaziridine ring caused an increased ρ compared to the aziridine series.
- 13. For log k = 12.8, $\Delta G^{\ddagger} = 0$ using the Eyring equation.
- 14. A. Brittain, J. Smith, P. Lee, K. Cohn and R. Schwendeman, J.Amer.Chem.Soc., 93, 6772 (1971).
- 15. The t-butylmethylphenylphosphine and p-tolymethylphenylphosphine log k's deviated considerably. 16. R.D. Baechler, J.D. Andose, J. Stackhouse and K. Mislow, J.Amer.Chem.Soc., 94, 8060 (1972).
 - Specially parametrized CNDO/2 calculations of the barriers were used for the correlations.